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INVESTIGATION OF FREQUENCY RATIOS

– Vertical oscillation frequency, ⌫

– Poisson Eq.
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– Disk with flat vc = constant ! ⌫2 = 4⇡G⇢
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measures the degree to which mass is concen-

trated towards the plane.

– Table 1.1 ⇢ ⇡ 0.1M�pc
�3 near the Sun
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– Harvard professor Lisa Randall wrote a book ”How dark matter killed di-

nosaurs”. Massive extinction period ⇠ 30Myr ? Dinosaurs, ⇠ 66 Myr ago.

Dissipating DM particle ! DM disk, ⌃ = 10 M�/pc
2, zd = 10 pc

⌫ =
p

4⇡G⇢ ⇢DM ⇠ 1M�/pc
3

! ⌫ is increased by a factor 3 ?

!
2⇡

⌫
! 30Myr?
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THE THIRD INTEGRAL OF MOTION

– General orbits in an axisymmetric potential E and Lz are integrals of motion,

but are there more? The two orbits with the same E and Lz, but they look

very different! Difference does not diminish, no matter how long they are

integrated.

! third integral?

– Eq. (3.70) �e↵ =
1
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@z
used Lz = constant to reduce motion in merid-

ional plane, (R, z)

– How to visualise. 4-D phase space (R, Ṙ, z, z)?

He↵(R, z, Ṙ, ż) = constant =
1

2
Ṙ2 +

1

2
ż2 + �e↵ ! 3D

– Poincoré surface of section (SOS): cut 3D ellipsoidal volume in (R, z, Ṙ),

construct a SOS diagram to show the phase space in 2D subspace (R, Ṙ)

– z = 0, and z > 0 (moving upwards), record (R, Ṙ) consequences to remove

sign ambiguity. ! no distinct orbits at the same E can occupy the same

point.

– Zero velocity curve (zvc) in sos. (ż = 0)

He↵ > 1

2
Ṙ2 + �e↵(R, z = 0)
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– If I3 exists, orbits lie on a smooth curve: Invariant curve (1-D curve in 2-D

space), otherwise can fill up the area inside zvc.

– I3 = non-classical integral, because I3 has no analytical expression in (~x,~v)

– We may get an intuitive picture of the nature of I3 = by considering two

special cases:

1� since |L| = integral for a spherical potential so for a nearly spherical

potential. I3 ⇡ |L| see the dashed line in Fig. 3.5.

|L(t)| oscillates rapidly, but its mean value does not change. So |L|

is an approximately conserved quantity, even in a flattened potential.

Orbits are approximately planar with rperi and rapo. The approximate

orbital plane has a fixed inclination to the z-axis but precesses about z.

Precession rate ! 0, for a increasingly spherical.

2� Potential separable in R and z

�(R, z) = �R(R) + �z(z)

Then I3 can be HZ =
1

2
p2z+�z(z) In the case of epicycle approximation,

what is the shape of the invariant curves?
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THE
KARL SCHWARZSCHILD

SCHWARZSCHILD DISTRIBUTION OF STARS IN THE MILKY WAY DISK

• Gas : Every component of the velocity distribution vi follows a Gaussian prob-

ability distribution.
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• Stars: velocity dispersion is different for every direction anisotropic

• Schwarzschild first postulated that the probability of (vR, v�, vz) in d3
v is
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• But it fails to reproduce the asym-

metrical distribution of v� for stars

with a higher random velocity.

How do we explain it?

• Stars in a galactic disk travel on nearly circular and coplanar orbits. Goal: find a

DF that generates cool disks in which random velocities are much smaller than vc

• The mean radius (or guiding radius) of nearly circular orbits:
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(Epicycle approximation)
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• Lz = R

3
2
g ·
�
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= Lz (Rg) $ Rg = Rg (Lz), one to -one relation.

– Note @Lz
@R > 0 for stable circular orbits.

• Thus the radial density profile ⌃(R) of a cool disk (low velocity dispersion) is

largely determined by the dependence of the DF upon Lz.

� ⌘ H � Ec(Lz)

where Ec (Lz): energy of a circular orbit with Lz,
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R=R(Lz)
======= Ec (Lz)

� is the energy associated with the random motion around the guiding center.

• Many stars with epicyclic oscillations in random phases lead to a velocity
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