INVESTIGATION OF FREQUENCY RATIOS

- Vertical oscillation frequency, ν
- Poisson Eq.

$$
\begin{aligned}
4 \pi G \rho & =\frac{1}{R} \frac{\partial}{\partial R}\left(R \frac{\partial \Phi}{\partial R}\right)+\frac{\partial^{2} \Phi}{\partial z^{2}} \\
& \simeq \frac{1}{R} \frac{\mathrm{~d} v_{\mathrm{c}}^{2}}{\mathrm{~d} R}+\nu^{2}
\end{aligned}
$$

- Disk with flat $v_{c}=$ constant $\rightarrow \nu^{2}=4 \pi G \rho$
- Flat $v_{c} \Rightarrow \kappa^{2}=2 \Omega^{2}$, also $\Omega^{2} \approx \frac{G M}{R^{3}}=\frac{4}{3} \pi G \bar{\rho}$. Roughly true even for a disk $\Rightarrow \frac{\nu^{2}}{\kappa^{2}}=\frac{\nu^{2}}{2 \Omega^{2}}=\frac{4 \pi G \rho}{\frac{8}{3} \pi G \bar{\rho}}=\frac{3}{2} \overline{\bar{\rho}}$ measures the degree to which mass is concentrated towards the plane.
- Table $1.1 \rho \approx 0.1 \mathrm{M}_{\odot} \mathrm{pc}^{-3}$ near the Sun
- Vertical oscillation period $\frac{2 \pi}{\nu}=\frac{2 \pi}{\sqrt{4 \pi G \rho}}=87 \mathrm{Myr}$
- $T=\frac{2 \pi}{\Omega}=\frac{2 \pi R_{0}}{v_{0}}=\frac{8.2 \mathrm{kpc}}{240 \mathrm{~km} / \mathrm{s}} \cdot 2 \pi=\frac{8200 \mathrm{pc}}{240 \mathrm{pc} / \mathrm{Myr}} \cdot 2 \pi=210 \mathrm{Myr}$
$1 \mathrm{~km}=1.023 \mathrm{pc} / \mathrm{Myr}$
$-\frac{2 \pi}{\kappa} \approx 155 \mathrm{Myr}$ if $\frac{\kappa_{0}}{\Omega_{0}}=2 \sqrt{\frac{-13}{A-B}}=1.35$
$-\frac{\nu}{\kappa} \approx 1.8$ for the Sun $\Rightarrow \bar{\rho}=\frac{3}{2} \rho \cdot\left(\frac{\kappa}{\nu}\right)^{2}=0.046 \mathrm{M}_{\odot} \mathrm{pc}^{-3}$
- Harvard professor Lisa Randall wrote a book "How dark matter killed dinosaurs". Massive extinction period $\sim 30 \mathrm{Myr}$? Dinosaurs, $\sim 66 \mathrm{Myr}$ ago.
Dissipating DM particle \rightarrow DM disk, $\Sigma=10 \mathrm{M}_{\odot} / \mathrm{pc}^{2}, z_{d}=10 \mathrm{pc}$
$\nu=\sqrt{4 \pi G \rho} \quad \rho_{\mathrm{DM}} \sim 1 \mathrm{M}_{\odot} / p c^{3}$
$\rightarrow \nu$ is increased by a factor 3 ?
$\rightarrow \frac{2 \pi}{\nu} \rightarrow 30 \mathrm{Myr}$?

THE THIRD INTEGRAL OF MOTION

- General orbits in an axisymmetric potential E and L_{z} are integrals of motion, but are there more? The two orbits with the same E and L_{z}, but they look very different! Difference does not diminish, no matter how long they are integrated.
\rightarrow third integral?
- Eq. (3.70) $\quad \Phi_{\text {eff }}=\frac{1}{2} v_{0}^{2} \ln \left(R^{2}+\frac{Z^{2}}{q^{2}}\right)+\frac{L_{z}^{2}}{2 R^{2}}$

Figure 3.4 Two orbits in the potential of equation (3.70) with $q=0.9$. Both orbits are at energy $E=-0.8$ and angular momentum $L_{z}=0.2$, and we assume $v_{0}=1$.

- $\ddot{R}=-\frac{\partial \Phi_{\text {eff }}}{\partial R} \quad \ddot{z}=-\frac{\partial \Phi_{\text {eff }}}{\partial z} \quad$ used $L_{z}=$ constant to reduce motion in meridional plane, (R, z)
- How to visualise. 4-D phase space (R, \dot{R}, z, z) ?

$$
H_{\mathrm{eff}}(R, z, \dot{R}, \dot{z})=\text { constant }=\frac{1}{2} \dot{R}^{2}+\frac{1}{2} \dot{z}^{2}+\Phi_{\mathrm{eff}} \rightarrow 3 D
$$

- Poincoré surface of section (SOS): cut 3D ellipsoidal volume in (R, z, \dot{R}), construct a SOS diagram to show the phase space in 2D subspace (R, \dot{R})
- $z=0$, and $z>0$ (moving upwards), record (R, \dot{R}) consequences to remove sign ambiguity. \rightarrow no distinct orbits at the same E can occupy the same point.
- Zero velocity curve (zvc) in sos. ($\dot{z}=0$)

$$
H_{\mathrm{eff}} \geqslant \frac{1}{2} \dot{R}^{2}+\Phi_{\mathrm{eff}}(R, z=0)
$$

Figure 3.5 Points generated by the orbit of the left panel of Figure 3.4 in the $\left(R, p_{R}\right)$ surface of section. If the total angular momentum L of the orbit were conserved, the points would fall on the dashed curve. The full curve is the zero-velocity curve at the energy of this orbit. The \times marks the consequent of the shell orbit.

- If I_{3} exists, orbits lie on a smooth curve: Invariant curve (1-D curve in 2-D space), otherwise can fill up the area inside zvc.
- $I_{3}=$ non-classical integral, because I_{3} has no analytical expression in (\vec{x}, \vec{v})
- We may get an intuitive picture of the nature of $I_{3}=$ by considering two special cases:
(1) since $|L|=$ integral for a spherical potential so for a nearly spherical potential. $I_{3} \approx|L|$ see the dashed line in Fig. 3.5.
$|L(t)|$ oscillates rapidly, but its mean value does not change. So $|L|$ is an approximately conserved quantity, even in a flattened potential. Orbits are approximately planar with $r_{\text {peri }}$ and $r_{\text {apo }}$. The approximate orbital plane has a fixed inclination to the z-axis but precesses about z.

Precession rate $\rightarrow 0$, for a increasingly spherical.
(2) Potential separable in R and z

$$
\Phi(R, z)=\Phi_{R}(R)+\Phi_{z}(z)
$$

Then I_{3} can be $H_{Z}=\frac{1}{2} p_{z}^{2}+\Phi_{z}(z)$ In the case of epicycle approximation, what is the shape of the invariant curves?

- Gas : Every component of the velocity distribution v_{i} follows a Gaussian probability distribution.

$$
\begin{aligned}
& \qquad f_{D}\left(v_{i}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{v_{i}^{2}}{2 \sigma z}\right] \\
& \text { where } v_{i}=v_{x}, v_{y}, v_{z}, \sigma_{x}=\sigma_{y}=\sigma_{z}=\sigma \quad \text { isotropic } \\
& \qquad f(\vec{v}) \mathrm{d}^{3} v=f_{D}\left(v_{x}\right) f_{D}\left(v_{y}\right) f_{D}\left(v_{z}\right) \mathrm{d}^{3} v=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{3} \exp \left[-\frac{\left|v^{2}\right|}{2 \sigma^{2}}\right] \mathrm{d}^{3} v \\
& \text { where }|v|^{2}=v_{x}^{2}+v_{y}^{2}+y_{z}^{2} \\
& -v \rightarrow v+\mathrm{d} v \\
& \qquad f(\vec{v}) \mathrm{d}^{3} v=f_{M}(v) \mathrm{d}^{3} v=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{3} 4 \pi v^{2} \exp \left(-\frac{v^{2}}{2 \sigma^{2}}\right) \mathrm{d} v \leftarrow \text { Maxwellian DF }
\end{aligned}
$$

- Stars: velocity dispersion is different for every direction
- Schwarzschild first postulated that the probability of $\left(v_{R}, v_{\phi}, v_{z}\right)$ in $\mathrm{d}^{3} v$ is

$$
P(\vec{v}) \mathrm{d}^{3} v=\frac{\mathrm{d}^{3} v}{(2 \pi)^{3 / 2} \sigma_{R} \sigma_{\phi} \sigma_{z}} \exp \left[-\left(\frac{v_{R}^{2}}{2 \sigma_{R}^{2}}+\frac{v_{\phi}^{2}}{2 \sigma_{\phi}^{2}}+\frac{v_{z}^{2}}{2 \sigma_{z}^{2}}\right)\right]
$$

- But it fails to reproduce the asymmetrical distribution of v_{ϕ} for stars with a higher random velocity.

How do we explain it?

- Stars in a galactic disk travel on nearly circular and coplanar orbits. Goal: find a DF that generates cool disks in which random velocities are much smaller than v_{c}
- The mean radius (or guiding radius) of nearly circular orbits:

$$
F_{R}=\left(\frac{\partial \Phi}{\partial R}\right)_{R=R_{g}}=\frac{v_{c}^{2}}{R_{g}}=\frac{L_{z}^{2}}{R_{g}^{3}}
$$

- $L_{z}=R_{g}^{\frac{3}{2}} \cdot\left(\frac{\partial \Phi}{\partial R}\right)_{R_{g}}^{1 / 2}=L_{z}\left(R_{g}\right) \quad \leftrightarrow \quad R_{g}=R_{g}\left(L_{z}\right)$, one to -one relation.
- Note $\frac{\partial L_{z}}{\partial R} \geqslant 0$ for stable circular orbits.
- Thus the radial density profile $\Sigma(R)$ of a cool disk (low velocity dispersion) is largely determined by the dependence of the DF upon L_{z}.

$$
\Delta \equiv H-E_{c}\left(L_{z}\right)
$$

where $E_{c}\left(L_{z}\right)$: energy of a circular orbit with L_{z},

$$
E_{c}(R)=\frac{1}{2} v_{\phi}^{2}+\Phi(R)=\frac{1}{2} \frac{L_{z}^{2}}{R^{2}}+\Phi(R) \xlongequal{R=R\left(L_{z}\right)} E_{c}\left(L_{z}\right)
$$

Δ is the energy associated with the random motion around the guiding center.

- Many stars with epicyclic oscillations in random phases lead to a velocity

