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INVESTIGATION OF FREQUENCY RATIOS

Vertical oscillation frequency, v

Poisson Eq.
10 0o 0*®
47TG[) = E@ (R@) + ﬁ
N 1 dvc2 9
~ RdR

Disk with flat v, = constant — | v* = 47Gp

M
Flat v, = k? = 202, also Q? ~ C;—g
2 2 4arGp 3 , _
LA - SW ’i = —/—j measures the degree to which mass is concen-
k* 202 SaGp 2p
trated towards the plane.

= %WGp. Roughly true even for a disk

Table 1.1 p ~ 0.1Mypc° near the Sun

21 2
Vertical oscillation period — = =| 87 My
P v /4AnGp .
2t 27Ry 8.2 kpc 8200 pc

=2 _ - Lo = o2 Pe
Q Vo 240 km/s "7 240 pc/Myr

lkm = 1.023 pc/Myr

m=| 210 Myr

2 1
T [155 Myr | if 22 — 9 s

=1.
K Q() A—-B 35

v _ 3 K\ 2 _3
=~ 18forthe Sun = = Sp- (;) — 0.046 My pe

Harvard professor Lisa Randall wrote a book "How dark matter killed di-
nosaurs”. Massive extinction period ~ 30Myr ? Dinosaurs, ~ 66 Myr ago.
Dissipating DM particle — DM disk, & = 10 M /pc®, zq = 10 pc
v=1/41Gp ppm ~ 1My /pc®

— v is increased by a factor 3 7

2
S 2T 30Myr?
1%
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THE THIRD INTEGRAL OF MOTION

— General orbits in an axisymmetric potential £ and L. are integrals of motion,

but are there more? The two orbits with the same F and L., but they look

very different! Difference does not diminish, no matter how long they are
integrated.

— third integral?
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Figure 3.4 Two orbits in the potential of equation (3.70) with ¢ = 0.9. Both orbits are
at energy E = —0.8 and angular momentum L, = 0.2, and we assume vg = 1.
- 0P 0P . .
- R=- 0}? Z=— BEH used L. = constant to reduce motion in merid-
z

ional plane, (R, z)

How to visualise. 4-D phase space (R, R, z, z)?

. 1. 1
H¢(R, z, R, 2) = constant = §R2 + 52'2 + &g — 3D

Poincoré surface of section (SOS): cut 3D ellipsoidal volume in (R, z, R),

construct a SOS diagram to show the phase space in 2D subspace (R, R)

- 2 =0, and z > 0 (moving upwards), record (R, R) consequences to remove

sign ambiguity. — no distinct orbits at the same E can occupy the same

point.

— Zero velocity curve (zvc) in sos. (2 = 0)

1.
Hg > 5}%2 + ®z(R, 2 =0)
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T T T LA B B N B L T T T ZVC(Z:(),Z:O),
i 15 whatis the orbit
L | corresponding to zvc?
0.5 —
i + f | L| is conserved
£ 0 _ shell orbit R = 0
L R 2
-0.5 —
- . —
B 1 0 R
. 1 1 1 | | 1 1 1 | | 1 | 1 1 ‘ | 1 1 | | | | 1 1 |
0 0.1 0.2 0.3 0.4 0.5

Figure 3.5 Points generated by the orbit of the left panel of Figure 3.4 in the (R,pRr)
surface of section. If the total angular momentum L of the orbit were conserved, the points
would fall on the dashed curve. The full curve is the zero-velocity curve at the energy of
this orbit. The X marks the consequent of the shell orbit.

— If I3 exists, orbits lie on a smooth curve: Invariant curve (1-D curve in 2-D

space), otherwise can fill up the area inside zvc.

— I3 = non-classical integral, because I35 has no analytical expression in (%, v)

— We may get an intuitive picture of the nature of I35 = by considering two

special cases:

@ since |L| = integral for a spherical potential so for a nearly spherical
potential. I3 ~ |L| see the dashed line in Fig. 3.5.
|L(t)| oscillates rapidly, but its mean value does not change. So |L|
is an approximately conserved quantity, even in a flattened potential.
Orbits are approximately planar with 7,.,; and r,,,. The approximate
orbital plane has a fixed inclination to the z-axis but precesses about z.
Precession rate — 0, for a increasingly spherical.

@ Potential separable in R and =
O(R,z) = Pr(R) + P.(2)
1 . . .
Then I3 canbe H; = §p§ +®.(z) In the case of epicycle approximation,

what is the shape of the invariant curves?
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KARL SCHWARZSCHILD

THE SCHWARZSCHILD DISTRIBUTION OF STARS IN THE MILKY WAY DISK

e Gas : Every component of the velocity distribution v; follows a | Gaussian

ability distribution.
1

V2o

Ip (Uz)

exp {
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I prob-
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20z

where v; = v,,v,,v,, 0, =0, =0, =0

isotropic

f(U) d*v = o (qu) fo (Uy) fp (UZ) d2v = (

where [v]? = v2 +v2 + 32

- v—=v+dv

f(l_f) dS’U = fM'(U) dgv = <

2ro

3
) 47v? exp (— !

Stars: velocity dispersion is different for every direction

\V2ro

1 [v?]

3
3
) exp [—202] d°v

2

> dv + | Maxwellian DF |

202

anisotropic

d3v

P(@)d*v = ——p——
(%) d (27)3/20 R0 40,

exp
But it fails to reproduce the asym-
metrical distribution of v, for stars

with a higher random velocity.

How do we explain it?

2

8

skewed

VR
2012% 203)

Schwarzschild first postulated that the probability of (vg, vs, v.) in d*v is

2

/UZ

2
Yo U
202

)

#of Sag

Vg

Goutssian

Stars in a galactic disk travel on nearly circular and coplanar orbits. Goal: find a

DF that generates cool disks in which random velocities are much smaller than v,

[
OR

2
Le

Ry

o= (o).,

The mean radius (or guiding radius) of nearly circular orbits:

(Epicycle approximation)



Schw. DF 2

3
o L.=R;- (a—}’;)f =L,(R,) <« R,=R,(L.),oneto-one relation.

— Note %= > 0 for stable circular orbits.

e Thus the radial density profile ¥(R) of a cool disk (low velocity dispersion) is

largely determined by the dependence of the DF upon L..

A=H— E(L,)

where E. (L.): energy of a circular orbit with L,

1 112 R=R(L.)

A is the energy associated with the random motion around the guiding center.

e Many stars with epicyclic oscillations in random phases lead to a velocity



